Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2544, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291109

RESUMO

Viruses from the Flaviviridae family, such as Dengue virus (DENV), Yellow fever virus (YFV), and Zika virus (ZIKV) are notorious global public health problems. ZIKV emergence in Polynesia and the Americas from 2013 to 2016 raised concerns as new distinguishing features set it apart from previous outbreaks, including its association with neurological complications and heightened disease severity. Virus detection is impaired as cross-reactivity to other closely related orthoflaviviruses is common among commercially available diagnostic kits. While non-structural protein 1 (NS1) has been used as an early marker of DENV and West Nile virus (WNV) infection, little is known about NS1 expression during ZIKV infection. In the present work, we developed a NS1 capture ELISA using a novel ZIKV-specific monoclonal antibody to study NS1 expression dynamics in vitro in mosquito and human cell lines. While detectable in culture supernatants, higher concentrations of NS1 were predominantly cell-associated. To our knowledge, this is the first report of NS1 detection in human cells despite viral clearance over time. Tests with human samples need to be conducted to validate the applicability of NS1 detection for diagnosis, but overall, the tools developed in this work are promising for specific detection of acute ZIKV infection.


Assuntos
Vírus da Dengue , Dengue , Febre do Nilo Ocidental , Infecção por Zika virus , Zika virus , Animais , Humanos , Anticorpos Antivirais , Proteínas não Estruturais Virais , Ensaio de Imunoadsorção Enzimática , Anticorpos Monoclonais , Sensibilidade e Especificidade
2.
Sci Adv ; 9(35): eadg9204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656782

RESUMO

Despite the considerable morbidity and mortality of yellow fever virus (YFV) infections in Brazil, our understanding of disease outbreaks is hampered by limited viral genomic data. Here, through a combination of phylogenetic and epidemiological models, we reconstructed the recent transmission history of YFV within different epidemic seasons in Brazil. A suitability index based on the highly domesticated Aedes aegypti was able to capture the seasonality of reported human infections. Spatial modeling revealed spatial hotspots with both past reporting and low vaccination coverage, which coincided with many of the largest urban centers in the Southeast. Phylodynamic analysis unraveled the circulation of three distinct lineages and provided proof of the directionality of a known spatial corridor that connects the endemic North with the extra-Amazonian basin. This study illustrates that genomics linked with eco-epidemiology can provide new insights into the landscape of YFV transmission, augmenting traditional approaches to infectious disease surveillance and control.


Assuntos
Febre Amarela , Vírus da Febre Amarela , Humanos , Vírus da Febre Amarela/genética , Filogenia , Brasil/epidemiologia , Febre Amarela/epidemiologia , Surtos de Doenças , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA